DEVELOPMENT OF REAL TIME REACTIVE OXYGEN SPECIES MONITORS

Zoran Ristovski

International Laboratory for Air Quality and Health, ARC Center for Free Radical Chemistry and Biotechnology, Biofuels Engine Research Facility

International Laboratory for Air Quality and Health (ILAQH)

Lidia Morawska

....since 1993

....until 2003, Environmental Aerosol Laboratory

....part of IHBI

....since 2004, WHO Collaborating Centre

.multidsciplinary team of over 25 researchers

Free Radical Chemistry and Biotechnology

Steven Bottle

An Australian Research Council Centre of Excellence www.freeradical.org.au

Research

Fundamental Radical Chemistry

Good Health & Preventing Disease

Radicals in the Environment

Radicals in Materials Technology

Pain & Inflammation Surface Coatings

Climate Change & Energy

Svetlana Stevanovic

Branka Miljevic

QUT labs: Headed by Prof. Steven Bottle, with Prof. Zoran Ristovski (Associate) and Drs. Miljevic and Fairfull-Smith, 1 PD and 12 PhD students

Fluorescence Equipment

5 Universities, >100 Scientists, >\$28 M budget Specialist MS, Laser, Synthesis, Magnetic Resonance and

Biofules Engine Research Facility - BERF

Richard Brown

CONTROL ROOM

CAPABILITIES

- Fuel Handling
 - Liquid and gaseous fuels (Hydrogen)
 - Dual fuel capability
 - Separate Biofuel / Petroleum handling
- Emission Tests
 - Gas (CO2, CO, HC, NOx)

Particles

PM & health effects

- Epidemiological studies strong associations between levels of ambient particulate matter (PM) and increased respiratory and cardiovascular disease morbidity and mortality
- mechanism(s) by which particles induce adverse health effects are still not entirely understood

Proposed mechanism: Oxidative stress hypothesis

a university for the real world Ristovski, Z., Miljevic, B., et al., (2012). Respiratory health effects of diesel particulate matter. *Respirology*, *17*, 201–212.

Free radicals

- Free radicals can be generated in the human body
- Free radicals make chain reaction
- Antioxidant terminate the chain reaction

ROS

- Sources: Exogenous and Endogenous
- Oxidative stress

·Ö:Ö·	·Ö:Ö:	:0:0:
Oxygen	Superoxide anion	Peroxide
02	·02	·02 ⁻²
H:ö:ö:H	·Ö:H	:Ö:H
Hydrogen Peroxide	Hydroxyl radical	Hydroxyl ion
H ₂ O ₂	·OH	OH-

IMPLICATED DISEASE STATES

PM & health effects

- **ROS** Reactive Oxygen Species $(O_2^{-.}, HO^{.}, RO^{.}, ROO^{.}, {}^{1}O_2, ONOO^{-}, H_2O_2, ROOH)$
- **oxidative stress** an imbalance between the production of ROS and the cell's (or body's) natural antioxidant defence.

Endogenous and exogenous ROS

- ROS can be formed endogenously, by the lung tissue cells, during the phagocytic processes initiated by the presence of PM in the lungs, or by particle-related chemical species that have the potential to generate ROS.
- In addition to the particle-induced generation of ROS, several recent studies have shown that particles may also contain ROS (so called, exogenous ROS).

Measurements of the radical generation capacity of the PM

- Dithiotheritol
- Strong reducing agent
- Measure the formation of the ROS by ٠ quinones
- Remaining DTT reacts with Ellman reagent
- Following by TNB production in 412 nm
- Report as:
 - nmol DTT min⁻¹µg _{PM}⁻¹
 - normalized index of oxidant generation and toxicity (NIOG)
- DTT and TNB are both light sensitive
- DTT is reactive toward limited number • of species
- Needs incubation time up to 90 min

11

DCFH-DA

- Dichlorofluorescin Diacetate
- Emit fluorescence after being oxidized by hydrogen peroxide
- Detection of H₂O₂
- Needs catalyst usually HRP
- Calibration curve base on hydrogen peroxide equivalent particles
- Prone to outooxidation
- HRP make three fold increase in the fluorescent intensity

for Air Quality and Health WHO Collaborating Centre

12

Profluorescent nitroxides

- Supressed fluorescence emission in the presence of nitroxide moiety
- These molecules react with radicals, leading either to reduction of the nitroxides to the hydroxylamines or oxidation to oxoammonium cation

Profluorescent nitroxides (PFNs)

Fairfull-Smith and Bottle. Eur J Org Chem (2008) (32) pp. 5391-5400

MOTIVATION

- Develop a cell-free assay for rapid and routine screenings of the oxidative potential of PM.
- Develop a stationary continuous monitor.
- Implement the assay in a portable personal exposure sensor.

Particle sampling

and Health VHO Collaborating Centre 17

BPEAnit assay – sampling:

- bubbling aerosol through an impinger with fritted nozzle tip containing BPEAnit solution (DCFH) fluorescence measurement
- solvent dimethylsulfoxide (DMSO)
- test & HEPA-filtered control sample taken

$$I_{485nm}(\text{test}) - I_{485nm}(\text{ctrl}) \longrightarrow I_{485nm}(\text{ROS}_{\text{particle}})$$

$$- \text{calibration curve}$$

Normalized to the measured particle mass

(ROS_{particle})

Real Time Detection of ROS

- Semi-automated systems where particles are collected onto filters first (DTT)
- To skip the extraction procedures particles have to be collected directly into a liquid
 - Water DCFH
 - DMSO BPEAnit
- The chemical assay can either be in the collection liquid or can be added later to the collection liquid.

Semi-automated systems

Particle first collected on quartz filters over 23 h. Extraction procedure: 1-inchdiameter punches were extracted in 15 mL of DI water by sonication. 5 mL were filtered and used in the DTT

assay.

a university for the real world Measurement Techniques, 8(1), 4

Semi-automated systems

Automated systems based on PILS

DCHF based systems – Clarkson Uni

Wang, Y., Hopke, et al. (2011). Laboratory and Field Testing of an Automated Atmospheric Particle-Bound Reactive Oxygen Species Sampling-Analysis System. *Journal of Toxicology*, *2011*(ID 419476)

PFN based system in development - QUT

Orsini, D. A. et al. (2008). A water cyclone to preserve insoluble aerosols in liquid flow -An interface to flow cytometry to detect airborne nucleic acid. *Aerosol Science and Technology*, *42*(5), 343–356.

DTT based systems in development -University of Illinois Urbana Champaign

Other non PILS based systems – DCFH (Cambridge Uni)

Other non PILS based systems -Impinger based system QUT-HKCityU

Conclusion

- Most systems still in development phase with only 1 of them used as a real time monitor (Clarkson Uni).
- Large problems with auto-oxidation of the chemical probes especially DCFH.
- DTT very complicated to be used.

PERSONAL ROS SENSORS

a university for the **real** world [®]

Approach

CURRENT TECHNOLOGY

Embedding PFN's into polymers for polymer degradation studies

Imbeding PFN's into polymers

Conclusion

- Technology still in development
- Problems of auto-oxidation of PFN's still not overcome
- Still not sufficient sensitivity for atmospheric levels of ROS.

Acknowledgment

- Organisers for the invitation to preent
- Funding:
 - Australian Coal Association Research Program
 - Australian Research Council
 - Institute for Future Environments

Thank you

8

Zoran Ristovski's group at ILAQH